Step |
Hyp |
Ref |
Expression |
1 |
|
peano1 |
|
2 |
|
fconst6g |
|
3 |
1 2
|
mp1i |
|
4 |
|
simpl |
|
5 |
1
|
a1i |
|
6 |
4 5
|
fczfsuppd |
|
7 |
|
simpr |
|
8 |
7
|
eleq2d |
|
9 |
|
eqid |
|
10 |
|
omelon |
|
11 |
10
|
a1i |
|
12 |
9 11 4
|
cantnfs |
|
13 |
8 12
|
bitrd |
|
14 |
3 6 13
|
mpbir2and |
|
15 |
7
|
eleq2d |
|
16 |
9 11 4
|
cantnfs |
|
17 |
15 16
|
bitrd |
|
18 |
17
|
simprbda |
|
19 |
18
|
ffnd |
|
20 |
19
|
adantr |
|
21 |
2
|
ffnd |
|
22 |
1 21
|
mp1i |
|
23 |
|
simplll |
|
24 |
|
inidm |
|
25 |
20 22 23 23 24
|
offn |
|
26 |
20
|
adantr |
|
27 |
1 21
|
mp1i |
|
28 |
|
simp-4l |
|
29 |
|
simpr |
|
30 |
|
fnfvof |
|
31 |
26 27 28 29 30
|
syl22anc |
|
32 |
|
fvconst2g |
|
33 |
1 29 32
|
sylancr |
|
34 |
33
|
oveq2d |
|
35 |
18
|
adantr |
|
36 |
35
|
ffvelcdmda |
|
37 |
|
nna0 |
|
38 |
36 37
|
syl |
|
39 |
31 34 38
|
3eqtrd |
|
40 |
25 20 39
|
eqfnfvd |
|
41 |
14 40
|
mpidan |
|