Metamath Proof Explorer


Theorem naddcnfid1

Description: Identity law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 3-Jan-2025)

Ref Expression
Assertion naddcnfid1 X On S = dom ω CNF X F S F + 𝑜 f X × = F

Proof

Step Hyp Ref Expression
1 peano1 ω
2 fconst6g ω X × : X ω
3 1 2 mp1i X On S = dom ω CNF X X × : X ω
4 simpl X On S = dom ω CNF X X On
5 1 a1i X On S = dom ω CNF X ω
6 4 5 fczfsuppd X On S = dom ω CNF X finSupp X ×
7 simpr X On S = dom ω CNF X S = dom ω CNF X
8 7 eleq2d X On S = dom ω CNF X X × S X × dom ω CNF X
9 eqid dom ω CNF X = dom ω CNF X
10 omelon ω On
11 10 a1i X On S = dom ω CNF X ω On
12 9 11 4 cantnfs X On S = dom ω CNF X X × dom ω CNF X X × : X ω finSupp X ×
13 8 12 bitrd X On S = dom ω CNF X X × S X × : X ω finSupp X ×
14 3 6 13 mpbir2and X On S = dom ω CNF X X × S
15 7 eleq2d X On S = dom ω CNF X F S F dom ω CNF X
16 9 11 4 cantnfs X On S = dom ω CNF X F dom ω CNF X F : X ω finSupp F
17 15 16 bitrd X On S = dom ω CNF X F S F : X ω finSupp F
18 17 simprbda X On S = dom ω CNF X F S F : X ω
19 18 ffnd X On S = dom ω CNF X F S F Fn X
20 19 adantr X On S = dom ω CNF X F S X × S F Fn X
21 2 ffnd ω X × Fn X
22 1 21 mp1i X On S = dom ω CNF X F S X × S X × Fn X
23 simplll X On S = dom ω CNF X F S X × S X On
24 inidm X X = X
25 20 22 23 23 24 offn X On S = dom ω CNF X F S X × S F + 𝑜 f X × Fn X
26 20 adantr X On S = dom ω CNF X F S X × S x X F Fn X
27 1 21 mp1i X On S = dom ω CNF X F S X × S x X X × Fn X
28 simp-4l X On S = dom ω CNF X F S X × S x X X On
29 simpr X On S = dom ω CNF X F S X × S x X x X
30 fnfvof F Fn X X × Fn X X On x X F + 𝑜 f X × x = F x + 𝑜 X × x
31 26 27 28 29 30 syl22anc X On S = dom ω CNF X F S X × S x X F + 𝑜 f X × x = F x + 𝑜 X × x
32 fvconst2g ω x X X × x =
33 1 29 32 sylancr X On S = dom ω CNF X F S X × S x X X × x =
34 33 oveq2d X On S = dom ω CNF X F S X × S x X F x + 𝑜 X × x = F x + 𝑜
35 18 adantr X On S = dom ω CNF X F S X × S F : X ω
36 35 ffvelcdmda X On S = dom ω CNF X F S X × S x X F x ω
37 nna0 F x ω F x + 𝑜 = F x
38 36 37 syl X On S = dom ω CNF X F S X × S x X F x + 𝑜 = F x
39 31 34 38 3eqtrd X On S = dom ω CNF X F S X × S x X F + 𝑜 f X × x = F x
40 25 20 39 eqfnfvd X On S = dom ω CNF X F S X × S F + 𝑜 f X × = F
41 14 40 mpidan X On S = dom ω CNF X F S F + 𝑜 f X × = F