| Step |
Hyp |
Ref |
Expression |
| 1 |
|
peano1 |
⊢ ∅ ∈ ω |
| 2 |
|
fconst6g |
⊢ ( ∅ ∈ ω → ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ) |
| 3 |
1 2
|
mp1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ) |
| 4 |
|
simpl |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑋 ∈ On ) |
| 5 |
1
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ∅ ∈ ω ) |
| 6 |
4 5
|
fczfsuppd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) finSupp ∅ ) |
| 7 |
|
simpr |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → 𝑆 = dom ( ω CNF 𝑋 ) ) |
| 8 |
7
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ↔ ( 𝑋 × { ∅ } ) ∈ dom ( ω CNF 𝑋 ) ) ) |
| 9 |
|
eqid |
⊢ dom ( ω CNF 𝑋 ) = dom ( ω CNF 𝑋 ) |
| 10 |
|
omelon |
⊢ ω ∈ On |
| 11 |
10
|
a1i |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ω ∈ On ) |
| 12 |
9 11 4
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ dom ( ω CNF 𝑋 ) ↔ ( ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ∧ ( 𝑋 × { ∅ } ) finSupp ∅ ) ) ) |
| 13 |
8 12
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ( 𝑋 × { ∅ } ) ∈ 𝑆 ↔ ( ( 𝑋 × { ∅ } ) : 𝑋 ⟶ ω ∧ ( 𝑋 × { ∅ } ) finSupp ∅ ) ) ) |
| 14 |
3 6 13
|
mpbir2and |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝑋 × { ∅ } ) ∈ 𝑆 ) |
| 15 |
7
|
eleq2d |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom ( ω CNF 𝑋 ) ) ) |
| 16 |
9 11 4
|
cantnfs |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ dom ( ω CNF 𝑋 ) ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 17 |
15 16
|
bitrd |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( 𝐹 ∈ 𝑆 ↔ ( 𝐹 : 𝑋 ⟶ ω ∧ 𝐹 finSupp ∅ ) ) ) |
| 18 |
17
|
simprbda |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ω ) |
| 19 |
18
|
ffnd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → 𝐹 Fn 𝑋 ) |
| 20 |
19
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → 𝐹 Fn 𝑋 ) |
| 21 |
2
|
ffnd |
⊢ ( ∅ ∈ ω → ( 𝑋 × { ∅ } ) Fn 𝑋 ) |
| 22 |
1 21
|
mp1i |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → ( 𝑋 × { ∅ } ) Fn 𝑋 ) |
| 23 |
|
simplll |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → 𝑋 ∈ On ) |
| 24 |
|
inidm |
⊢ ( 𝑋 ∩ 𝑋 ) = 𝑋 |
| 25 |
20 22 23 23 24
|
offn |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) Fn 𝑋 ) |
| 26 |
20
|
adantr |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 Fn 𝑋 ) |
| 27 |
1 21
|
mp1i |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝑋 × { ∅ } ) Fn 𝑋 ) |
| 28 |
|
simp-4l |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑋 ∈ On ) |
| 29 |
|
simpr |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 30 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝑋 ∧ ( 𝑋 × { ∅ } ) Fn 𝑋 ) ∧ ( 𝑋 ∈ On ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝑋 × { ∅ } ) ‘ 𝑥 ) ) ) |
| 31 |
26 27 28 29 30
|
syl22anc |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝑋 × { ∅ } ) ‘ 𝑥 ) ) ) |
| 32 |
|
fvconst2g |
⊢ ( ( ∅ ∈ ω ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { ∅ } ) ‘ 𝑥 ) = ∅ ) |
| 33 |
1 29 32
|
sylancr |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑋 × { ∅ } ) ‘ 𝑥 ) = ∅ ) |
| 34 |
33
|
oveq2d |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) +o ( ( 𝑋 × { ∅ } ) ‘ 𝑥 ) ) = ( ( 𝐹 ‘ 𝑥 ) +o ∅ ) ) |
| 35 |
18
|
adantr |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → 𝐹 : 𝑋 ⟶ ω ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ω ) |
| 37 |
|
nna0 |
⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ω → ( ( 𝐹 ‘ 𝑥 ) +o ∅ ) = ( 𝐹 ‘ 𝑥 ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) +o ∅ ) = ( 𝐹 ‘ 𝑥 ) ) |
| 39 |
31 34 38
|
3eqtrd |
⊢ ( ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 40 |
25 20 39
|
eqfnfvd |
⊢ ( ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) ∧ ( 𝑋 × { ∅ } ) ∈ 𝑆 ) → ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) = 𝐹 ) |
| 41 |
14 40
|
mpidan |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ 𝐹 ∈ 𝑆 ) → ( 𝐹 ∘f +o ( 𝑋 × { ∅ } ) ) = 𝐹 ) |