| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres |  |-  ( ( F e. S /\ G e. S ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) ) | 
						
							| 3 |  | naddcnff |  |-  ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S ) | 
						
							| 4 | 3 | fovcdmda |  |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) e. S ) | 
						
							| 5 | 2 4 | eqeltrrd |  |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) e. S ) |