Step |
Hyp |
Ref |
Expression |
1 |
|
ovres |
|- ( ( F e. S /\ G e. S ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) ) |
2 |
1
|
adantl |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) ) |
3 |
|
naddcnff |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S ) |
4 |
3
|
fovcdmda |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) e. S ) |
5 |
2 4
|
eqeltrrd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) e. S ) |