Metamath Proof Explorer


Theorem naddcnfcl

Description: Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnfcl
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) e. S )

Proof

Step Hyp Ref Expression
1 ovres
 |-  ( ( F e. S /\ G e. S ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) )
2 1 adantl
 |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) = ( F oF +o G ) )
3 naddcnff
 |-  ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S )
4 3 fovcdmda
 |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F ( oF +o |` ( S X. S ) ) G ) e. S )
5 2 4 eqeltrrd
 |-  ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( F e. S /\ G e. S ) ) -> ( F oF +o G ) e. S )