Metamath Proof Explorer


Theorem naddcnfcl

Description: Closure law for component-wise ordinal addition of Cantor normal forms. (Contributed by RP, 2-Jan-2025)

Ref Expression
Assertion naddcnfcl ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹𝑆𝐺𝑆 ) ) → ( 𝐹f +o 𝐺 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 ovres ( ( 𝐹𝑆𝐺𝑆 ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) = ( 𝐹f +o 𝐺 ) )
2 1 adantl ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹𝑆𝐺𝑆 ) ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) = ( 𝐹f +o 𝐺 ) )
3 naddcnff ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) : ( 𝑆 × 𝑆 ) ⟶ 𝑆 )
4 3 fovcdmda ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹𝑆𝐺𝑆 ) ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) ∈ 𝑆 )
5 2 4 eqeltrrd ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹𝑆𝐺𝑆 ) ) → ( 𝐹f +o 𝐺 ) ∈ 𝑆 )