Step |
Hyp |
Ref |
Expression |
1 |
|
ovres |
⊢ ( ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) = ( 𝐹 ∘f +o 𝐺 ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) = ( 𝐹 ∘f +o 𝐺 ) ) |
3 |
|
naddcnff |
⊢ ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) → ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) : ( 𝑆 × 𝑆 ) ⟶ 𝑆 ) |
4 |
3
|
fovcdmda |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐹 ( ∘f +o ↾ ( 𝑆 × 𝑆 ) ) 𝐺 ) ∈ 𝑆 ) |
5 |
2 4
|
eqeltrrd |
⊢ ( ( ( 𝑋 ∈ On ∧ 𝑆 = dom ( ω CNF 𝑋 ) ) ∧ ( 𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ) ) → ( 𝐹 ∘f +o 𝐺 ) ∈ 𝑆 ) |