| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres | ⊢ ( ( 𝐹  ∈  𝑆  ∧  𝐺  ∈  𝑆 )  →  ( 𝐹 (  ∘f   +o   ↾  ( 𝑆  ×  𝑆 ) ) 𝐺 )  =  ( 𝐹  ∘f   +o  𝐺 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝑋  ∈  On  ∧  𝑆  =  dom  ( ω  CNF  𝑋 ) )  ∧  ( 𝐹  ∈  𝑆  ∧  𝐺  ∈  𝑆 ) )  →  ( 𝐹 (  ∘f   +o   ↾  ( 𝑆  ×  𝑆 ) ) 𝐺 )  =  ( 𝐹  ∘f   +o  𝐺 ) ) | 
						
							| 3 |  | naddcnff | ⊢ ( ( 𝑋  ∈  On  ∧  𝑆  =  dom  ( ω  CNF  𝑋 ) )  →  (  ∘f   +o   ↾  ( 𝑆  ×  𝑆 ) ) : ( 𝑆  ×  𝑆 ) ⟶ 𝑆 ) | 
						
							| 4 | 3 | fovcdmda | ⊢ ( ( ( 𝑋  ∈  On  ∧  𝑆  =  dom  ( ω  CNF  𝑋 ) )  ∧  ( 𝐹  ∈  𝑆  ∧  𝐺  ∈  𝑆 ) )  →  ( 𝐹 (  ∘f   +o   ↾  ( 𝑆  ×  𝑆 ) ) 𝐺 )  ∈  𝑆 ) | 
						
							| 5 | 2 4 | eqeltrrd | ⊢ ( ( ( 𝑋  ∈  On  ∧  𝑆  =  dom  ( ω  CNF  𝑋 ) )  ∧  ( 𝐹  ∈  𝑆  ∧  𝐺  ∈  𝑆 ) )  →  ( 𝐹  ∘f   +o  𝐺 )  ∈  𝑆 ) |