Step |
Hyp |
Ref |
Expression |
1 |
|
naddcnff |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S ) |
2 |
|
simpr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> f e. S ) |
3 |
|
peano1 |
|- (/) e. _om |
4 |
|
fconst6g |
|- ( (/) e. _om -> ( X X. { (/) } ) : X --> _om ) |
5 |
3 4
|
mp1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) : X --> _om ) |
6 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
7 |
3
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> (/) e. _om ) |
8 |
6 7
|
fczfsuppd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) finSupp (/) ) |
9 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
10 |
9
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( X X. { (/) } ) e. dom ( _om CNF X ) ) ) |
11 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
12 |
|
omelon |
|- _om e. On |
13 |
12
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
14 |
11 13 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. dom ( _om CNF X ) <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
15 |
10 14
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( X X. { (/) } ) e. S <-> ( ( X X. { (/) } ) : X --> _om /\ ( X X. { (/) } ) finSupp (/) ) ) ) |
16 |
5 8 15
|
mpbir2and |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( X X. { (/) } ) e. S ) |
17 |
16
|
adantr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> ( X X. { (/) } ) e. S ) |
18 |
|
simpl |
|- ( ( f e. S /\ ( X X. { (/) } ) e. S ) -> f e. S ) |
19 |
18
|
adantl |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> f e. S ) |
20 |
|
simpr |
|- ( ( f e. S /\ ( X X. { (/) } ) e. S ) -> ( X X. { (/) } ) e. S ) |
21 |
20
|
adantl |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> ( X X. { (/) } ) e. S ) |
22 |
19 21
|
ovresd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) = ( f oF +o ( X X. { (/) } ) ) ) |
23 |
9
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S <-> f e. dom ( _om CNF X ) ) ) |
24 |
11 13 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. dom ( _om CNF X ) <-> ( f : X --> _om /\ f finSupp (/) ) ) ) |
25 |
23 24
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S <-> ( f : X --> _om /\ f finSupp (/) ) ) ) |
26 |
25
|
biimpd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S -> ( f : X --> _om /\ f finSupp (/) ) ) ) |
27 |
|
simpl |
|- ( ( f : X --> _om /\ f finSupp (/) ) -> f : X --> _om ) |
28 |
18 26 27
|
syl56 |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( f e. S /\ ( X X. { (/) } ) e. S ) -> f : X --> _om ) ) |
29 |
28
|
imp |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> f : X --> _om ) |
30 |
29
|
ffnd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> f Fn X ) |
31 |
|
fnconstg |
|- ( (/) e. _om -> ( X X. { (/) } ) Fn X ) |
32 |
3 31
|
mp1i |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> ( X X. { (/) } ) Fn X ) |
33 |
6
|
adantr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> X e. On ) |
34 |
|
inidm |
|- ( X i^i X ) = X |
35 |
30 32 33 33 34
|
offn |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> ( f oF +o ( X X. { (/) } ) ) Fn X ) |
36 |
30
|
adantr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> f Fn X ) |
37 |
3 31
|
mp1i |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( X X. { (/) } ) Fn X ) |
38 |
|
simplll |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> X e. On ) |
39 |
|
simpr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> x e. X ) |
40 |
|
fnfvof |
|- ( ( ( f Fn X /\ ( X X. { (/) } ) Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( f oF +o ( X X. { (/) } ) ) ` x ) = ( ( f ` x ) +o ( ( X X. { (/) } ) ` x ) ) ) |
41 |
36 37 38 39 40
|
syl22anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( ( f oF +o ( X X. { (/) } ) ) ` x ) = ( ( f ` x ) +o ( ( X X. { (/) } ) ` x ) ) ) |
42 |
3
|
a1i |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> (/) e. _om ) |
43 |
|
fvconst2g |
|- ( ( (/) e. _om /\ x e. X ) -> ( ( X X. { (/) } ) ` x ) = (/) ) |
44 |
42 39 43
|
syl2anc |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( ( X X. { (/) } ) ` x ) = (/) ) |
45 |
44
|
oveq2d |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( ( f ` x ) +o ( ( X X. { (/) } ) ` x ) ) = ( ( f ` x ) +o (/) ) ) |
46 |
29
|
ffvelcdmda |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( f ` x ) e. _om ) |
47 |
|
nnon |
|- ( ( f ` x ) e. _om -> ( f ` x ) e. On ) |
48 |
|
oa0 |
|- ( ( f ` x ) e. On -> ( ( f ` x ) +o (/) ) = ( f ` x ) ) |
49 |
46 47 48
|
3syl |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( ( f ` x ) +o (/) ) = ( f ` x ) ) |
50 |
41 45 49
|
3eqtrd |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) /\ x e. X ) -> ( ( f oF +o ( X X. { (/) } ) ) ` x ) = ( f ` x ) ) |
51 |
35 30 50
|
eqfnfvd |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> ( f oF +o ( X X. { (/) } ) ) = f ) |
52 |
22 51
|
eqtr2d |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f e. S /\ ( X X. { (/) } ) e. S ) ) -> f = ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) ) |
53 |
52
|
expr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> ( ( X X. { (/) } ) e. S -> f = ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) ) ) |
54 |
17 53
|
jcai |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> ( ( X X. { (/) } ) e. S /\ f = ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) ) ) |
55 |
|
oveq2 |
|- ( z = ( X X. { (/) } ) -> ( f ( oF +o |` ( S X. S ) ) z ) = ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) ) |
56 |
55
|
rspceeqv |
|- ( ( ( X X. { (/) } ) e. S /\ f = ( f ( oF +o |` ( S X. S ) ) ( X X. { (/) } ) ) ) -> E. z e. S f = ( f ( oF +o |` ( S X. S ) ) z ) ) |
57 |
54 56
|
syl |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> E. z e. S f = ( f ( oF +o |` ( S X. S ) ) z ) ) |
58 |
|
oveq1 |
|- ( g = f -> ( g ( oF +o |` ( S X. S ) ) z ) = ( f ( oF +o |` ( S X. S ) ) z ) ) |
59 |
58
|
eqeq2d |
|- ( g = f -> ( f = ( g ( oF +o |` ( S X. S ) ) z ) <-> f = ( f ( oF +o |` ( S X. S ) ) z ) ) ) |
60 |
59
|
rexbidv |
|- ( g = f -> ( E. z e. S f = ( g ( oF +o |` ( S X. S ) ) z ) <-> E. z e. S f = ( f ( oF +o |` ( S X. S ) ) z ) ) ) |
61 |
60
|
rspcev |
|- ( ( f e. S /\ E. z e. S f = ( f ( oF +o |` ( S X. S ) ) z ) ) -> E. g e. S E. z e. S f = ( g ( oF +o |` ( S X. S ) ) z ) ) |
62 |
2 57 61
|
syl2anc |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ f e. S ) -> E. g e. S E. z e. S f = ( g ( oF +o |` ( S X. S ) ) z ) ) |
63 |
62
|
ralrimiva |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> A. f e. S E. g e. S E. z e. S f = ( g ( oF +o |` ( S X. S ) ) z ) ) |
64 |
|
foov |
|- ( ( oF +o |` ( S X. S ) ) : ( S X. S ) -onto-> S <-> ( ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S /\ A. f e. S E. g e. S E. z e. S f = ( g ( oF +o |` ( S X. S ) ) z ) ) ) |
65 |
1 63 64
|
sylanbrc |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) -onto-> S ) |