Metamath Proof Explorer


Theorem natixp

Description: A natural transformation is a function from the objects of C to homomorphisms from F ( x ) to G ( x ) . (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypotheses natrcl.1 N=CNatD
natixp.2 φAFGNKL
natixp.b B=BaseC
natixp.j J=HomD
Assertion natixp φAxBFxJKx

Proof

Step Hyp Ref Expression
1 natrcl.1 N=CNatD
2 natixp.2 φAFGNKL
3 natixp.b B=BaseC
4 natixp.j J=HomD
5 eqid HomC=HomC
6 eqid compD=compD
7 1 natrcl AFGNKLFGCFuncDKLCFuncD
8 2 7 syl φFGCFuncDKLCFuncD
9 8 simpld φFGCFuncD
10 df-br FCFuncDGFGCFuncD
11 9 10 sylibr φFCFuncDG
12 8 simprd φKLCFuncD
13 df-br KCFuncDLKLCFuncD
14 12 13 sylibr φKCFuncDL
15 1 3 5 4 6 11 14 isnat φAFGNKLAxBFxJKxxByBzxHomCyAyFxFycompDKyxGyz=xLyzFxKxcompDKyAx
16 2 15 mpbid φAxBFxJKxxByBzxHomCyAyFxFycompDKyxGyz=xLyzFxKxcompDKyAx
17 16 simpld φAxBFxJKx