Description: A natural transformation is a function from the objects of C to homomorphisms from F ( x ) to G ( x ) . (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | natrcl.1 | |
|
natixp.2 | |
||
natixp.b | |
||
natixp.j | |
||
Assertion | natixp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | natrcl.1 | |
|
2 | natixp.2 | |
|
3 | natixp.b | |
|
4 | natixp.j | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 1 | natrcl | |
8 | 2 7 | syl | |
9 | 8 | simpld | |
10 | df-br | |
|
11 | 9 10 | sylibr | |
12 | 8 | simprd | |
13 | df-br | |
|
14 | 12 13 | sylibr | |
15 | 1 3 5 4 6 11 14 | isnat | |
16 | 2 15 | mpbid | |
17 | 16 | simpld | |