Metamath Proof Explorer


Theorem natrcl2

Description: Reverse closure for a natural transformation. (Contributed by Zhi Wang, 1-Oct-2025)

Ref Expression
Hypotheses natrcl2.n N = C Nat D
natrcl2.a φ A F G N K L
Assertion natrcl2 φ F C Func D G

Proof

Step Hyp Ref Expression
1 natrcl2.n N = C Nat D
2 natrcl2.a φ A F G N K L
3 1 natrcl A F G N K L F G C Func D K L C Func D
4 2 3 syl φ F G C Func D K L C Func D
5 4 simpld φ F G C Func D
6 df-br F C Func D G F G C Func D
7 5 6 sylibr φ F C Func D G