Metamath Proof Explorer


Theorem nbgr0vtxlem

Description: Lemma for nbgr0vtx and nbgr0edg . (Contributed by AV, 15-Nov-2020)

Ref Expression
Hypothesis nbgr0vtxlem.v φnVtxGK¬eEdgGKne
Assertion nbgr0vtxlem φGNeighbVtxK=

Proof

Step Hyp Ref Expression
1 nbgr0vtxlem.v φnVtxGK¬eEdgGKne
2 eqid VtxG=VtxG
3 eqid EdgG=EdgG
4 2 3 nbgrval KVtxGGNeighbVtxK=nVtxGK|eEdgGKne
5 4 ad2antrl GVKVKVtxGφGNeighbVtxK=nVtxGK|eEdgGKne
6 1 ad2antll GVKVKVtxGφnVtxGK¬eEdgGKne
7 rabeq0 nVtxGK|eEdgGKne=nVtxGK¬eEdgGKne
8 6 7 sylibr GVKVKVtxGφnVtxGK|eEdgGKne=
9 5 8 eqtrd GVKVKVtxGφGNeighbVtxK=
10 9 expcom KVtxGφGVKVGNeighbVtxK=
11 10 ex KVtxGφGVKVGNeighbVtxK=
12 11 com23 KVtxGGVKVφGNeighbVtxK=
13 df-nel KVtxG¬KVtxG
14 2 nbgrnvtx0 KVtxGGNeighbVtxK=
15 13 14 sylbir ¬KVtxGGNeighbVtxK=
16 15 a1d ¬KVtxGφGNeighbVtxK=
17 nbgrprc0 ¬GVKVGNeighbVtxK=
18 17 a1d ¬GVKVφGNeighbVtxK=
19 12 16 18 pm2.61nii φGNeighbVtxK=