Metamath Proof Explorer


Theorem ndvdsi

Description: A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014)

Ref Expression
Hypotheses ndvdsi.1 A
ndvdsi.2 Q0
ndvdsi.3 R
ndvdsi.4 AQ+R=B
ndvdsi.5 R<A
Assertion ndvdsi ¬AB

Proof

Step Hyp Ref Expression
1 ndvdsi.1 A
2 ndvdsi.2 Q0
3 ndvdsi.3 R
4 ndvdsi.4 AQ+R=B
5 ndvdsi.5 R<A
6 1 nnzi A
7 2 nn0zi Q
8 dvdsmul1 AQAAQ
9 6 7 8 mp2an AAQ
10 zmulcl AQAQ
11 6 7 10 mp2an AQ
12 3 5 pm3.2i RR<A
13 ndvdsadd AQARR<AAAQ¬AAQ+R
14 11 1 12 13 mp3an AAQ¬AAQ+R
15 9 14 ax-mp ¬AAQ+R
16 4 breq2i AAQ+RAB
17 15 16 mtbi ¬AB