Metamath Proof Explorer


Theorem ndvdsadd

Description: Corollary of the division algorithm. If an integer D greater than 1 divides N , then it does not divide any of N + 1 , N + 2 ... N + ( D - 1 ) . (Contributed by Paul Chapman, 31-Mar-2011)

Ref Expression
Assertion ndvdsadd NDKK<DDN¬DN+K

Proof

Step Hyp Ref Expression
1 nnre KK
2 nnre DD
3 posdif KDK<D0<DK
4 1 2 3 syl2anr DKK<D0<DK
5 4 pm5.32i DKK<DDK0<DK
6 nnz DD
7 nnz KK
8 zsubcl DKDK
9 6 7 8 syl2an DKDK
10 elnnz DKDK0<DK
11 10 biimpri DK0<DKDK
12 9 11 sylan DK0<DKDK
13 5 12 sylbi DKK<DDK
14 13 anasss DKK<DDK
15 nngt0 K0<K
16 ltsubpos KD0<KDK<D
17 1 2 16 syl2an KD0<KDK<D
18 17 biimpd KD0<KDK<D
19 18 expcom DK0<KDK<D
20 15 19 mpdi DKDK<D
21 20 imp DKDK<D
22 21 adantrr DKK<DDK<D
23 14 22 jca DKK<DDKDK<D
24 23 3adant1 NDKK<DDKDK<D
25 ndvdssub NDDKDK<DDN¬DNDK
26 24 25 syld3an3 NDKK<DDN¬DNDK
27 zaddcl NKN+K
28 7 27 sylan2 NKN+K
29 dvdssubr DN+KDN+KDN+K-D
30 6 28 29 syl2an DNKDN+KDN+K-D
31 30 an12s NDKDN+KDN+K-D
32 31 3impb NDKDN+KDN+K-D
33 zcn NN
34 nncn DD
35 nncn KK
36 subsub3 NDKNDK=N+K-D
37 33 34 35 36 syl3an NDKNDK=N+K-D
38 37 breq2d NDKDNDKDN+K-D
39 32 38 bitr4d NDKDN+KDNDK
40 39 notbid NDK¬DN+K¬DNDK
41 40 3adant3r NDKK<D¬DN+K¬DNDK
42 26 41 sylibrd NDKK<DDN¬DN+K