Metamath Proof Explorer


Theorem negsubdi

Description: Distribution of negative over subtraction. (Contributed by NM, 15-Nov-2004) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion negsubdi ABAB=-A+B

Proof

Step Hyp Ref Expression
1 0cn 0
2 subsub 0AB0AB=0-A+B
3 1 2 mp3an1 AB0AB=0-A+B
4 df-neg AB=0AB
5 df-neg A=0A
6 5 oveq1i -A+B=0-A+B
7 3 4 6 3eqtr4g ABAB=-A+B