Metamath Proof Explorer


Theorem negsubdid

Description: Distribution of negative over subtraction. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
Assertion negsubdid φAB=-A+B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 negsubdi ABAB=-A+B
4 1 2 3 syl2anc φAB=-A+B