Metamath Proof Explorer


Theorem neicvgbex

Description: If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, H , then the base set exists. (Contributed by RP, 4-Jun-2021)

Ref Expression
Hypotheses neicvgbex.d D = P B
neicvgbex.h H = F D G
neicvgbex.r φ N H M
Assertion neicvgbex φ B V

Proof

Step Hyp Ref Expression
1 neicvgbex.d D = P B
2 neicvgbex.h H = F D G
3 neicvgbex.r φ N H M
4 1 coeq1i D G = P B G
5 4 coeq2i F D G = F P B G
6 2 5 eqtri H = F P B G
7 6 a1i φ H = F P B G
8 7 3 breqdi φ N F P B G M
9 brne0 N F P B G M F P B G
10 fvprc ¬ B V P B =
11 10 dmeqd ¬ B V dom P B = dom
12 dm0 dom =
13 11 12 eqtrdi ¬ B V dom P B =
14 13 ineq1d ¬ B V dom P B ran G = ran G
15 0in ran G =
16 14 15 eqtrdi ¬ B V dom P B ran G =
17 16 coemptyd ¬ B V P B G =
18 17 rneqd ¬ B V ran P B G = ran
19 rn0 ran =
20 18 19 eqtrdi ¬ B V ran P B G =
21 20 ineq2d ¬ B V dom F ran P B G = dom F
22 in0 dom F =
23 21 22 eqtrdi ¬ B V dom F ran P B G =
24 23 coemptyd ¬ B V F P B G =
25 24 necon1ai F P B G B V
26 8 9 25 3syl φ B V