Metamath Proof Explorer


Theorem neicvgnvo

Description: If neighborhood and convergent functions are related by operator H , it is its own converse function. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
neicvg.d D = P B
neicvg.f F = 𝒫 B O B
neicvg.g G = B O 𝒫 B
neicvg.h H = F D G
neicvg.r φ N H M
Assertion neicvgnvo φ H -1 = H

Proof

Step Hyp Ref Expression
1 neicvg.o O = i V , j V k 𝒫 j i l j m i | l k m
2 neicvg.p P = n V p 𝒫 n 𝒫 n o 𝒫 n n p n o
3 neicvg.d D = P B
4 neicvg.f F = 𝒫 B O B
5 neicvg.g G = B O 𝒫 B
6 neicvg.h H = F D G
7 neicvg.r φ N H M
8 6 cnveqi H -1 = F D G -1
9 cnvco F D G -1 = D G -1 F -1
10 cnvco D G -1 = G -1 D -1
11 10 coeq1i D G -1 F -1 = G -1 D -1 F -1
12 8 9 11 3eqtri H -1 = G -1 D -1 F -1
13 3 6 7 neicvgbex φ B V
14 13 pwexd φ 𝒫 B V
15 1 13 14 5 4 fsovcnvd φ G -1 = F
16 2 3 13 dssmapnvod φ D -1 = D
17 15 16 coeq12d φ G -1 D -1 = F D
18 1 14 13 4 5 fsovcnvd φ F -1 = G
19 17 18 coeq12d φ G -1 D -1 F -1 = F D G
20 12 19 syl5eq φ H -1 = F D G
21 coass F D G = F D G
22 21 6 eqtr4i F D G = H
23 20 22 eqtrdi φ H -1 = H