Metamath Proof Explorer


Theorem neicvgnvo

Description: If neighborhood and convergent functions are related by operator H , it is its own converse function. (Contributed by RP, 11-Jun-2021)

Ref Expression
Hypotheses neicvg.o O=iV,jVk𝒫jiljmi|lkm
neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
neicvg.d D=PB
neicvg.f F=𝒫BOB
neicvg.g G=BO𝒫B
neicvg.h H=FDG
neicvg.r φNHM
Assertion neicvgnvo φH-1=H

Proof

Step Hyp Ref Expression
1 neicvg.o O=iV,jVk𝒫jiljmi|lkm
2 neicvg.p P=nVp𝒫n𝒫no𝒫nnpno
3 neicvg.d D=PB
4 neicvg.f F=𝒫BOB
5 neicvg.g G=BO𝒫B
6 neicvg.h H=FDG
7 neicvg.r φNHM
8 6 cnveqi H-1=FDG-1
9 cnvco FDG-1=DG-1F-1
10 cnvco DG-1=G-1D-1
11 10 coeq1i DG-1F-1=G-1D-1F-1
12 8 9 11 3eqtri H-1=G-1D-1F-1
13 3 6 7 neicvgbex φBV
14 13 pwexd φ𝒫BV
15 1 13 14 5 4 fsovcnvd φG-1=F
16 2 3 13 dssmapnvod φD-1=D
17 15 16 coeq12d φG-1D-1=FD
18 1 14 13 4 5 fsovcnvd φF-1=G
19 17 18 coeq12d φG-1D-1F-1=FDG
20 12 19 eqtrid φH-1=FDG
21 coass FDG=FDG
22 21 6 eqtr4i FDG=H
23 20 22 eqtrdi φH-1=H