Metamath Proof Explorer


Theorem neif

Description: The neighborhood function is a function from the set of the subsets of the base set of a topology. (Contributed by NM, 12-Feb-2007) (Revised by Mario Carneiro, 11-Nov-2013)

Ref Expression
Hypothesis neifval.1 X=J
Assertion neif JTopneiJFn𝒫X

Proof

Step Hyp Ref Expression
1 neifval.1 X=J
2 1 topopn JTopXJ
3 pwexg XJ𝒫XV
4 rabexg 𝒫XVv𝒫X|gJxggvV
5 2 3 4 3syl JTopv𝒫X|gJxggvV
6 5 ralrimivw JTopx𝒫Xv𝒫X|gJxggvV
7 eqid x𝒫Xv𝒫X|gJxggv=x𝒫Xv𝒫X|gJxggv
8 7 fnmpt x𝒫Xv𝒫X|gJxggvVx𝒫Xv𝒫X|gJxggvFn𝒫X
9 6 8 syl JTopx𝒫Xv𝒫X|gJxggvFn𝒫X
10 1 neifval JTopneiJ=x𝒫Xv𝒫X|gJxggv
11 10 fneq1d JTopneiJFn𝒫Xx𝒫Xv𝒫X|gJxggvFn𝒫X
12 9 11 mpbird JTopneiJFn𝒫X