Metamath Proof Explorer


Theorem neiin

Description: Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009)

Ref Expression
Assertion neiin JTopMneiJANneiJBMNneiJAB

Proof

Step Hyp Ref Expression
1 simpr JTopMneiJAMneiJA
2 simpl JTopMneiJAJTop
3 eqid J=J
4 3 neiss2 JTopMneiJAAJ
5 3 neii1 JTopMneiJAMJ
6 3 neiint JTopAJMJMneiJAAintJM
7 2 4 5 6 syl3anc JTopMneiJAMneiJAAintJM
8 1 7 mpbid JTopMneiJAAintJM
9 ssinss1 AintJMABintJM
10 8 9 syl JTopMneiJAABintJM
11 10 3adant3 JTopMneiJANneiJBABintJM
12 inss2 ABB
13 simpr JTopNneiJBNneiJB
14 simpl JTopNneiJBJTop
15 3 neiss2 JTopNneiJBBJ
16 3 neii1 JTopNneiJBNJ
17 3 neiint JTopBJNJNneiJBBintJN
18 14 15 16 17 syl3anc JTopNneiJBNneiJBBintJN
19 13 18 mpbid JTopNneiJBBintJN
20 19 3adant2 JTopMneiJANneiJBBintJN
21 12 20 sstrid JTopMneiJANneiJBABintJN
22 11 21 ssind JTopMneiJANneiJBABintJMintJN
23 simp1 JTopMneiJANneiJBJTop
24 5 3adant3 JTopMneiJANneiJBMJ
25 16 3adant2 JTopMneiJANneiJBNJ
26 3 ntrin JTopMJNJintJMN=intJMintJN
27 23 24 25 26 syl3anc JTopMneiJANneiJBintJMN=intJMintJN
28 22 27 sseqtrrd JTopMneiJANneiJBABintJMN
29 ssinss1 AJABJ
30 4 29 syl JTopMneiJAABJ
31 ssinss1 MJMNJ
32 5 31 syl JTopMneiJAMNJ
33 3 neiint JTopABJMNJMNneiJABABintJMN
34 2 30 32 33 syl3anc JTopMneiJAMNneiJABABintJMN
35 34 3adant3 JTopMneiJANneiJBMNneiJABABintJMN
36 28 35 mpbird JTopMneiJANneiJBMNneiJAB