Metamath Proof Explorer


Theorem neipeltop

Description: Lemma for neiptopreu . (Contributed by Thierry Arnoux, 6-Jan-2018)

Ref Expression
Hypothesis neiptop.o J=a𝒫X|paaNp
Assertion neipeltop CJCXpCCNp

Proof

Step Hyp Ref Expression
1 neiptop.o J=a𝒫X|paaNp
2 eleq1 a=CaNpCNp
3 2 raleqbi1dv a=CpaaNppCCNp
4 3 1 elrab2 CJC𝒫XpCCNp
5 0ex V
6 eleq1 C=CVV
7 5 6 mpbiri C=CV
8 7 adantl pCCNpC=CV
9 elex CNpCV
10 9 ralimi pCCNppCCV
11 r19.3rzv CCVpCCV
12 11 biimparc pCCVCCV
13 10 12 sylan pCCNpCCV
14 8 13 pm2.61dane pCCNpCV
15 elpwg CVC𝒫XCX
16 14 15 syl pCCNpC𝒫XCX
17 16 pm5.32ri C𝒫XpCCNpCXpCCNp
18 4 17 bitri CJCXpCCNp