Metamath Proof Explorer


Theorem neiuni

Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007) (Revised by Mario Carneiro, 9-Apr-2015)

Ref Expression
Hypothesis tpnei.1 X=J
Assertion neiuni JTopSXX=neiJS

Proof

Step Hyp Ref Expression
1 tpnei.1 X=J
2 1 tpnei JTopSXXneiJS
3 2 biimpa JTopSXXneiJS
4 elssuni XneiJSXneiJS
5 3 4 syl JTopSXXneiJS
6 1 neii1 JTopxneiJSxX
7 6 ex JTopxneiJSxX
8 7 adantr JTopSXxneiJSxX
9 8 ralrimiv JTopSXxneiJSxX
10 unissb neiJSXxneiJSxX
11 9 10 sylibr JTopSXneiJSX
12 5 11 eqssd JTopSXX=neiJS