| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpnei.1 |
|- X = U. J |
| 2 |
1
|
tpnei |
|- ( J e. Top -> ( S C_ X <-> X e. ( ( nei ` J ) ` S ) ) ) |
| 3 |
2
|
biimpa |
|- ( ( J e. Top /\ S C_ X ) -> X e. ( ( nei ` J ) ` S ) ) |
| 4 |
|
elssuni |
|- ( X e. ( ( nei ` J ) ` S ) -> X C_ U. ( ( nei ` J ) ` S ) ) |
| 5 |
3 4
|
syl |
|- ( ( J e. Top /\ S C_ X ) -> X C_ U. ( ( nei ` J ) ` S ) ) |
| 6 |
1
|
neii1 |
|- ( ( J e. Top /\ x e. ( ( nei ` J ) ` S ) ) -> x C_ X ) |
| 7 |
6
|
ex |
|- ( J e. Top -> ( x e. ( ( nei ` J ) ` S ) -> x C_ X ) ) |
| 8 |
7
|
adantr |
|- ( ( J e. Top /\ S C_ X ) -> ( x e. ( ( nei ` J ) ` S ) -> x C_ X ) ) |
| 9 |
8
|
ralrimiv |
|- ( ( J e. Top /\ S C_ X ) -> A. x e. ( ( nei ` J ) ` S ) x C_ X ) |
| 10 |
|
unissb |
|- ( U. ( ( nei ` J ) ` S ) C_ X <-> A. x e. ( ( nei ` J ) ` S ) x C_ X ) |
| 11 |
9 10
|
sylibr |
|- ( ( J e. Top /\ S C_ X ) -> U. ( ( nei ` J ) ` S ) C_ X ) |
| 12 |
5 11
|
eqssd |
|- ( ( J e. Top /\ S C_ X ) -> X = U. ( ( nei ` J ) ` S ) ) |