| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpnei.1 |
⊢ 𝑋 = ∪ 𝐽 |
| 2 |
1
|
tpnei |
⊢ ( 𝐽 ∈ Top → ( 𝑆 ⊆ 𝑋 ↔ 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
| 3 |
2
|
biimpa |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 4 |
|
elssuni |
⊢ ( 𝑋 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑋 ⊆ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 5 |
3 4
|
syl |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 ⊆ ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |
| 6 |
1
|
neii1 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑥 ⊆ 𝑋 ) |
| 7 |
6
|
ex |
⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ⊆ 𝑋 ) ) |
| 8 |
7
|
adantr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) → 𝑥 ⊆ 𝑋 ) ) |
| 9 |
8
|
ralrimiv |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥 ⊆ 𝑋 ) |
| 10 |
|
unissb |
⊢ ( ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ↔ ∀ 𝑥 ∈ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) 𝑥 ⊆ 𝑋 ) |
| 11 |
9 10
|
sylibr |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
| 12 |
5 11
|
eqssd |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑋 = ∪ ( ( nei ‘ 𝐽 ) ‘ 𝑆 ) ) |