| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tpnei.1 |
|- X = U. J |
| 2 |
1
|
elcls |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 3 |
1
|
isneip |
|- ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) <-> ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) ) ) |
| 4 |
|
r19.29r |
|- ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 5 |
|
pm3.35 |
|- ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x i^i S ) =/= (/) ) |
| 6 |
|
ssrin |
|- ( x C_ n -> ( x i^i S ) C_ ( n i^i S ) ) |
| 7 |
|
sseq2 |
|- ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) <-> ( x i^i S ) C_ (/) ) ) |
| 8 |
|
ss0 |
|- ( ( x i^i S ) C_ (/) -> ( x i^i S ) = (/) ) |
| 9 |
7 8
|
biimtrdi |
|- ( ( n i^i S ) = (/) -> ( ( x i^i S ) C_ ( n i^i S ) -> ( x i^i S ) = (/) ) ) |
| 10 |
6 9
|
syl5com |
|- ( x C_ n -> ( ( n i^i S ) = (/) -> ( x i^i S ) = (/) ) ) |
| 11 |
10
|
necon3d |
|- ( x C_ n -> ( ( x i^i S ) =/= (/) -> ( n i^i S ) =/= (/) ) ) |
| 12 |
5 11
|
syl5com |
|- ( ( P e. x /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) |
| 13 |
12
|
ex |
|- ( P e. x -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( x C_ n -> ( n i^i S ) =/= (/) ) ) ) |
| 14 |
13
|
com23 |
|- ( P e. x -> ( x C_ n -> ( ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 15 |
14
|
imp31 |
|- ( ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 16 |
15
|
rexlimivw |
|- ( E. x e. J ( ( P e. x /\ x C_ n ) /\ ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 17 |
4 16
|
syl |
|- ( ( E. x e. J ( P e. x /\ x C_ n ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n i^i S ) =/= (/) ) |
| 18 |
17
|
ex |
|- ( E. x e. J ( P e. x /\ x C_ n ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) |
| 19 |
18
|
adantl |
|- ( ( n C_ X /\ E. x e. J ( P e. x /\ x C_ n ) ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) |
| 20 |
3 19
|
biimtrdi |
|- ( ( J e. Top /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 21 |
20
|
3adant2 |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n i^i S ) =/= (/) ) ) ) |
| 22 |
21
|
com23 |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) ) |
| 23 |
22
|
imp |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> ( n e. ( ( nei ` J ) ` { P } ) -> ( n i^i S ) =/= (/) ) ) |
| 24 |
23
|
ralrimiv |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) -> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) |
| 25 |
|
opnneip |
|- ( ( J e. Top /\ x e. J /\ P e. x ) -> x e. ( ( nei ` J ) ` { P } ) ) |
| 26 |
|
ineq1 |
|- ( n = x -> ( n i^i S ) = ( x i^i S ) ) |
| 27 |
26
|
neeq1d |
|- ( n = x -> ( ( n i^i S ) =/= (/) <-> ( x i^i S ) =/= (/) ) ) |
| 28 |
27
|
rspccva |
|- ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( x i^i S ) =/= (/) ) |
| 29 |
|
idd |
|- ( ( P e. X /\ ( J e. Top /\ x e. J /\ P e. x ) /\ S C_ X ) -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) |
| 30 |
29
|
3exp |
|- ( P e. X -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( ( x i^i S ) =/= (/) -> ( x i^i S ) =/= (/) ) ) ) ) |
| 31 |
30
|
com14 |
|- ( ( x i^i S ) =/= (/) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 32 |
28 31
|
syl |
|- ( ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) /\ x e. ( ( nei ` J ) ` { P } ) ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 33 |
32
|
ex |
|- ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 34 |
33
|
com3l |
|- ( x e. ( ( nei ` J ) ` { P } ) -> ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 35 |
25 34
|
mpcom |
|- ( ( J e. Top /\ x e. J /\ P e. x ) -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) |
| 36 |
35
|
3expia |
|- ( ( J e. Top /\ x e. J ) -> ( P e. x -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. X -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 37 |
36
|
com25 |
|- ( ( J e. Top /\ x e. J ) -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) |
| 38 |
37
|
ex |
|- ( J e. Top -> ( x e. J -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( S C_ X -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) |
| 39 |
38
|
com25 |
|- ( J e. Top -> ( S C_ X -> ( P e. X -> ( A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) ) ) ) |
| 40 |
39
|
3imp1 |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> ( x e. J -> ( P e. x -> ( x i^i S ) =/= (/) ) ) ) |
| 41 |
40
|
ralrimiv |
|- ( ( ( J e. Top /\ S C_ X /\ P e. X ) /\ A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) -> A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) ) |
| 42 |
24 41
|
impbida |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( A. x e. J ( P e. x -> ( x i^i S ) =/= (/) ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |
| 43 |
2 42
|
bitrd |
|- ( ( J e. Top /\ S C_ X /\ P e. X ) -> ( P e. ( ( cls ` J ) ` S ) <-> A. n e. ( ( nei ` J ) ` { P } ) ( n i^i S ) =/= (/) ) ) |