Metamath Proof Explorer


Theorem nelb

Description: A definition of -. A e. B . (Contributed by Thierry Arnoux, 20-Nov-2023) (Proof shortened by SN, 23-Jan-2024) (Proof shortened by Wolf Lammen, 3-Nov-2024)

Ref Expression
Assertion nelb ¬ABxBxA

Proof

Step Hyp Ref Expression
1 df-ne xA¬x=A
2 1 ralbii xBxAxB¬x=A
3 ralnex xB¬x=A¬xBx=A
4 2 3 bitr2i ¬xBx=AxBxA
5 risset ABxBx=A
6 4 5 xchnxbir ¬ABxBxA