Metamath Proof Explorer


Theorem nepnfltpnf

Description: An extended real that is not +oo is less than +oo . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses nepnfltpnf.1 φA+∞
nepnfltpnf.2 φA*
Assertion nepnfltpnf φA<+∞

Proof

Step Hyp Ref Expression
1 nepnfltpnf.1 φA+∞
2 nepnfltpnf.2 φA*
3 1 neneqd φ¬A=+∞
4 nltpnft A*A=+∞¬A<+∞
5 2 4 syl φA=+∞¬A<+∞
6 3 5 mtbid φ¬¬A<+∞
7 notnotb A<+∞¬¬A<+∞
8 6 7 sylibr φA<+∞