Metamath Proof Explorer


Theorem nfintd

Description: Bound-variable hypothesis builder for intersection. (Contributed by Emmett Weisz, 16-Jan-2020)

Ref Expression
Hypothesis nfintd.1 φ_xA
Assertion nfintd φ_xA

Proof

Step Hyp Ref Expression
1 nfintd.1 φ_xA
2 df-int A=y|zzAyz
3 nfv yφ
4 nfv zφ
5 1 nfcrd φxzA
6 nfv xyz
7 6 a1i φxyz
8 5 7 nfimd φxzAyz
9 4 8 nfald φxzzAyz
10 3 9 nfabdw φ_xy|zzAyz
11 2 10 nfcxfrd φ_xA