Metamath Proof Explorer


Theorem nfiund

Description: Bound-variable hypothesis builder for indexed union. (Contributed by Emmett Weisz, 6-Dec-2019) Add disjoint variable condition to avoid ax-13 . See nfiundg for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024)

Ref Expression
Hypotheses nfiund.1 x φ
nfiund.2 φ _ y A
nfiund.3 φ _ y B
Assertion nfiund φ _ y x A B

Proof

Step Hyp Ref Expression
1 nfiund.1 x φ
2 nfiund.2 φ _ y A
3 nfiund.3 φ _ y B
4 df-iun x A B = z | x A z B
5 nfv z φ
6 3 nfcrd φ y z B
7 1 2 6 nfrexd φ y x A z B
8 5 7 nfabdw φ _ y z | x A z B
9 4 8 nfcxfrd φ _ y x A B