Metamath Proof Explorer


Theorem nfnid

Description: A setvar variable is not free from itself. This theorem is not true in a one-element domain, as illustrated by the use of dtruALT2 in its proof. (Contributed by Mario Carneiro, 8-Oct-2016)

Ref Expression
Assertion nfnid ¬_xx

Proof

Step Hyp Ref Expression
1 dtruALT2 ¬zz=w
2 ax-ext yyzywz=w
3 2 sps wyyzywz=w
4 3 alimi zwyyzywzz=w
5 1 4 mto ¬zwyyzyw
6 df-nfc _xxyxyx
7 sbnf2 xyxzwzxyxwxyx
8 elsb2 zxyxyz
9 elsb2 wxyxyw
10 8 9 bibi12i zxyxwxyxyzyw
11 10 2albii zwzxyxwxyxzwyzyw
12 7 11 bitri xyxzwyzyw
13 12 albii yxyxyzwyzyw
14 alrot3 yzwyzywzwyyzyw
15 6 13 14 3bitri _xxzwyyzyw
16 5 15 mtbir ¬_xx