Metamath Proof Explorer


Theorem nfopd

Description: Deduction version of bound-variable hypothesis builder nfop . This shows how the deduction version of a not-free theorem such as nfop can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008)

Ref Expression
Hypotheses nfopd.2 φ_xA
nfopd.3 φ_xB
Assertion nfopd φ_xAB

Proof

Step Hyp Ref Expression
1 nfopd.2 φ_xA
2 nfopd.3 φ_xB
3 nfaba1 _xz|xzA
4 nfaba1 _xz|xzB
5 3 4 nfop _xz|xzAz|xzB
6 nfnfc1 x_xA
7 nfnfc1 x_xB
8 6 7 nfan x_xA_xB
9 abidnf _xAz|xzA=A
10 9 adantr _xA_xBz|xzA=A
11 abidnf _xBz|xzB=B
12 11 adantl _xA_xBz|xzB=B
13 10 12 opeq12d _xA_xBz|xzAz|xzB=AB
14 8 13 nfceqdf _xA_xB_xz|xzAz|xzB_xAB
15 1 2 14 syl2anc φ_xz|xzAz|xzB_xAB
16 5 15 mpbii φ_xAB