Metamath Proof Explorer


Theorem nfrdg

Description: Bound-variable hypothesis builder for the recursive definition generator. (Contributed by NM, 14-Sep-2003) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Hypotheses nfrdg.1 _xF
nfrdg.2 _xA
Assertion nfrdg _xrecFA

Proof

Step Hyp Ref Expression
1 nfrdg.1 _xF
2 nfrdg.2 _xA
3 df-rdg recFA=recsgVifg=AifLimdomgrangFgdomg
4 nfcv _xV
5 nfv xg=
6 nfv xLimdomg
7 nfcv _xrang
8 nfcv _xgdomg
9 1 8 nffv _xFgdomg
10 6 7 9 nfif _xifLimdomgrangFgdomg
11 5 2 10 nfif _xifg=AifLimdomgrangFgdomg
12 4 11 nfmpt _xgVifg=AifLimdomgrangFgdomg
13 12 nfrecs _xrecsgVifg=AifLimdomgrangFgdomg
14 3 13 nfcxfr _xrecFA