Metamath Proof Explorer


Theorem nfunidALT2

Description: Deduction version of nfuni . (Contributed by NM, 19-Nov-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis nfunidALT2.1 φ_xA
Assertion nfunidALT2 φ_xA

Proof

Step Hyp Ref Expression
1 nfunidALT2.1 φ_xA
2 nfaba1 _xy|xyA
3 2 nfuni _xy|xyA
4 nfnfc1 x_xA
5 abidnf _xAy|xyA=A
6 5 unieqd _xAy|xyA=A
7 4 6 nfceqdf _xA_xy|xyA_xA
8 1 7 syl φ_xy|xyA_xA
9 3 8 mpbii φ_xA