Metamath Proof Explorer


Theorem nfunsnafv2

Description: If the restriction of a class to a singleton is not a function, its value at the singleton element is undefined, compare with nfunsn . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion nfunsnafv2 ¬FunFAF''''AranF

Proof

Step Hyp Ref Expression
1 olc ¬FunFA¬AdomF¬FunFA
2 ianor ¬AdomFFunFA¬AdomF¬FunFA
3 df-dfat FdefAtAAdomFFunFA
4 2 3 xchnxbir ¬FdefAtA¬AdomF¬FunFA
5 1 4 sylibr ¬FunFA¬FdefAtA
6 ndfatafv2nrn ¬FdefAtAF''''AranF
7 5 6 syl ¬FunFAF''''AranF