Metamath Proof Explorer


Theorem ngpds2

Description: Write the distance between two points in terms of distance from zero. (Contributed by Mario Carneiro, 2-Oct-2015)

Ref Expression
Hypotheses ngpds2.x X=BaseG
ngpds2.z 0˙=0G
ngpds2.m -˙=-G
ngpds2.d D=distG
Assertion ngpds2 GNrmGrpAXBXADB=A-˙BD0˙

Proof

Step Hyp Ref Expression
1 ngpds2.x X=BaseG
2 ngpds2.z 0˙=0G
3 ngpds2.m -˙=-G
4 ngpds2.d D=distG
5 eqid normG=normG
6 5 1 3 4 ngpds GNrmGrpAXBXADB=normGA-˙B
7 ngpgrp GNrmGrpGGrp
8 1 3 grpsubcl GGrpAXBXA-˙BX
9 7 8 syl3an1 GNrmGrpAXBXA-˙BX
10 5 1 2 4 nmval A-˙BXnormGA-˙B=A-˙BD0˙
11 9 10 syl GNrmGrpAXBXnormGA-˙B=A-˙BD0˙
12 6 11 eqtrd GNrmGrpAXBXADB=A-˙BD0˙