Metamath Proof Explorer


Theorem nlmngp2

Description: The scalar component of a left module is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypothesis nlmnrg.1 F=ScalarW
Assertion nlmngp2 WNrmModFNrmGrp

Proof

Step Hyp Ref Expression
1 nlmnrg.1 F=ScalarW
2 1 nlmnrg WNrmModFNrmRing
3 nrgngp FNrmRingFNrmGrp
4 2 3 syl WNrmModFNrmGrp