Metamath Proof Explorer


Theorem nltled

Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses ltd.1 φA
ltd.2 φB
nltled.1 φ¬B<A
Assertion nltled φAB

Proof

Step Hyp Ref Expression
1 ltd.1 φA
2 ltd.2 φB
3 nltled.1 φ¬B<A
4 1 2 lenltd φAB¬B<A
5 3 4 mpbird φAB