Metamath Proof Explorer


Theorem nltpnft

Description: An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006)

Ref Expression
Assertion nltpnft A*A=+∞¬A<+∞

Proof

Step Hyp Ref Expression
1 pnfxr +∞*
2 xrltnr +∞*¬+∞<+∞
3 1 2 ax-mp ¬+∞<+∞
4 breq1 A=+∞A<+∞+∞<+∞
5 3 4 mtbiri A=+∞¬A<+∞
6 pnfge A*A+∞
7 xrleloe A*+∞*A+∞A<+∞A=+∞
8 1 7 mpan2 A*A+∞A<+∞A=+∞
9 6 8 mpbid A*A<+∞A=+∞
10 9 ord A*¬A<+∞A=+∞
11 5 10 impbid2 A*A=+∞¬A<+∞