Metamath Proof Explorer


Theorem nmcfnex

Description: The norm of a continuous linear Hilbert space functional exists. Theorem 3.5(i) of Beran p. 99. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmcfnex TLinFnTContFnnormfnT

Proof

Step Hyp Ref Expression
1 elin TLinFnContFnTLinFnTContFn
2 fveq2 T=ifTLinFnContFnT×0normfnT=normfnifTLinFnContFnT×0
3 2 eleq1d T=ifTLinFnContFnT×0normfnTnormfnifTLinFnContFnT×0
4 0lnfn ×0LinFn
5 0cnfn ×0ContFn
6 elin ×0LinFnContFn×0LinFn×0ContFn
7 4 5 6 mpbir2an ×0LinFnContFn
8 7 elimel ifTLinFnContFnT×0LinFnContFn
9 elin ifTLinFnContFnT×0LinFnContFnifTLinFnContFnT×0LinFnifTLinFnContFnT×0ContFn
10 8 9 mpbi ifTLinFnContFnT×0LinFnifTLinFnContFnT×0ContFn
11 10 simpli ifTLinFnContFnT×0LinFn
12 10 simpri ifTLinFnContFnT×0ContFn
13 11 12 nmcfnexi normfnifTLinFnContFnT×0
14 3 13 dedth TLinFnContFnnormfnT
15 1 14 sylbir TLinFnTContFnnormfnT