Metamath Proof Explorer


Theorem nmcnc

Description: The norm of a normed complex vector space is a continuous function to CC . (For RR , see nmcvcn .) (Contributed by NM, 12-Aug-2007) (New usage is discouraged.)

Ref Expression
Hypotheses nmcnc.1 N=normCVU
nmcnc.2 C=IndMetU
nmcnc.j J=MetOpenC
nmcnc.k K=TopOpenfld
Assertion nmcnc UNrmCVecNJCnK

Proof

Step Hyp Ref Expression
1 nmcnc.1 N=normCVU
2 nmcnc.2 C=IndMetU
3 nmcnc.j J=MetOpenC
4 nmcnc.k K=TopOpenfld
5 4 cnfldtop KTop
6 cnrest2r KTopJCnK𝑡JCnK
7 5 6 ax-mp JCnK𝑡JCnK
8 4 tgioo2 topGenran.=K𝑡
9 8 eqcomi K𝑡=topGenran.
10 1 2 3 9 nmcvcn UNrmCVecNJCnK𝑡
11 7 10 sselid UNrmCVecNJCnK