Metamath Proof Explorer


Theorem nmcvcn

Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007) (Proof shortened by Mario Carneiro, 10-Jan-2014) (New usage is discouraged.)

Ref Expression
Hypotheses nmcvcn.1 N=normCVU
nmcvcn.2 C=IndMetU
nmcvcn.j J=MetOpenC
nmcvcn.k K=topGenran.
Assertion nmcvcn UNrmCVecNJCnK

Proof

Step Hyp Ref Expression
1 nmcvcn.1 N=normCVU
2 nmcvcn.2 C=IndMetU
3 nmcvcn.j J=MetOpenC
4 nmcvcn.k K=topGenran.
5 eqid BaseSetU=BaseSetU
6 5 1 nvf UNrmCVecN:BaseSetU
7 simprr UNrmCVecxBaseSetUe+e+
8 5 1 nvcl UNrmCVecxBaseSetUNx
9 8 ex UNrmCVecxBaseSetUNx
10 5 1 nvcl UNrmCVecyBaseSetUNy
11 10 ex UNrmCVecyBaseSetUNy
12 9 11 anim12d UNrmCVecxBaseSetUyBaseSetUNxNy
13 eqid abs2=abs2
14 13 remet abs2Met
15 metcl abs2MetNxNyNxabs2Ny
16 14 15 mp3an1 NxNyNxabs2Ny
17 12 16 syl6 UNrmCVecxBaseSetUyBaseSetUNxabs2Ny
18 17 3impib UNrmCVecxBaseSetUyBaseSetUNxabs2Ny
19 5 2 imsmet UNrmCVecCMetBaseSetU
20 metcl CMetBaseSetUxBaseSetUyBaseSetUxCy
21 19 20 syl3an1 UNrmCVecxBaseSetUyBaseSetUxCy
22 eqid +vU=+vU
23 eqid 𝑠OLDU=𝑠OLDU
24 5 22 23 1 nvabs UNrmCVecxBaseSetUyBaseSetUNxNyNx+vU-1𝑠OLDUy
25 12 3impib UNrmCVecxBaseSetUyBaseSetUNxNy
26 13 remetdval NxNyNxabs2Ny=NxNy
27 25 26 syl UNrmCVecxBaseSetUyBaseSetUNxabs2Ny=NxNy
28 5 22 23 1 2 imsdval2 UNrmCVecxBaseSetUyBaseSetUxCy=Nx+vU-1𝑠OLDUy
29 24 27 28 3brtr4d UNrmCVecxBaseSetUyBaseSetUNxabs2NyxCy
30 18 21 29 jca31 UNrmCVecxBaseSetUyBaseSetUNxabs2NyxCyNxabs2NyxCy
31 30 3expa UNrmCVecxBaseSetUyBaseSetUNxabs2NyxCyNxabs2NyxCy
32 rpre e+e
33 lelttr Nxabs2NyxCyeNxabs2NyxCyxCy<eNxabs2Ny<e
34 33 3expa Nxabs2NyxCyeNxabs2NyxCyxCy<eNxabs2Ny<e
35 34 expdimp Nxabs2NyxCyeNxabs2NyxCyxCy<eNxabs2Ny<e
36 35 an32s Nxabs2NyxCyNxabs2NyxCyexCy<eNxabs2Ny<e
37 31 32 36 syl2an UNrmCVecxBaseSetUyBaseSetUe+xCy<eNxabs2Ny<e
38 37 ex UNrmCVecxBaseSetUyBaseSetUe+xCy<eNxabs2Ny<e
39 38 ralrimdva UNrmCVecxBaseSetUe+yBaseSetUxCy<eNxabs2Ny<e
40 39 impr UNrmCVecxBaseSetUe+yBaseSetUxCy<eNxabs2Ny<e
41 breq2 d=exCy<dxCy<e
42 41 rspceaimv e+yBaseSetUxCy<eNxabs2Ny<ed+yBaseSetUxCy<dNxabs2Ny<e
43 7 40 42 syl2anc UNrmCVecxBaseSetUe+d+yBaseSetUxCy<dNxabs2Ny<e
44 43 ralrimivva UNrmCVecxBaseSetUe+d+yBaseSetUxCy<dNxabs2Ny<e
45 5 2 imsxmet UNrmCVecC∞MetBaseSetU
46 13 rexmet abs2∞Met
47 eqid MetOpenabs2=MetOpenabs2
48 13 47 tgioo topGenran.=MetOpenabs2
49 4 48 eqtri K=MetOpenabs2
50 3 49 metcn C∞MetBaseSetUabs2∞MetNJCnKN:BaseSetUxBaseSetUe+d+yBaseSetUxCy<dNxabs2Ny<e
51 45 46 50 sylancl UNrmCVecNJCnKN:BaseSetUxBaseSetUe+d+yBaseSetUxCy<dNxabs2Ny<e
52 6 44 51 mpbir2and UNrmCVecNJCnK