Description: The norm of a normed complex vector space is a continuous function. (Contributed by NM, 16-May-2007) (Proof shortened by Mario Carneiro, 10-Jan-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nmcvcn.1 | |
|
nmcvcn.2 | |
||
nmcvcn.j | |
||
nmcvcn.k | |
||
Assertion | nmcvcn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmcvcn.1 | |
|
2 | nmcvcn.2 | |
|
3 | nmcvcn.j | |
|
4 | nmcvcn.k | |
|
5 | eqid | |
|
6 | 5 1 | nvf | |
7 | simprr | |
|
8 | 5 1 | nvcl | |
9 | 8 | ex | |
10 | 5 1 | nvcl | |
11 | 10 | ex | |
12 | 9 11 | anim12d | |
13 | eqid | |
|
14 | 13 | remet | |
15 | metcl | |
|
16 | 14 15 | mp3an1 | |
17 | 12 16 | syl6 | |
18 | 17 | 3impib | |
19 | 5 2 | imsmet | |
20 | metcl | |
|
21 | 19 20 | syl3an1 | |
22 | eqid | |
|
23 | eqid | |
|
24 | 5 22 23 1 | nvabs | |
25 | 12 | 3impib | |
26 | 13 | remetdval | |
27 | 25 26 | syl | |
28 | 5 22 23 1 2 | imsdval2 | |
29 | 24 27 28 | 3brtr4d | |
30 | 18 21 29 | jca31 | |
31 | 30 | 3expa | |
32 | rpre | |
|
33 | lelttr | |
|
34 | 33 | 3expa | |
35 | 34 | expdimp | |
36 | 35 | an32s | |
37 | 31 32 36 | syl2an | |
38 | 37 | ex | |
39 | 38 | ralrimdva | |
40 | 39 | impr | |
41 | breq2 | |
|
42 | 41 | rspceaimv | |
43 | 7 40 42 | syl2anc | |
44 | 43 | ralrimivva | |
45 | 5 2 | imsxmet | |
46 | 13 | rexmet | |
47 | eqid | |
|
48 | 13 47 | tgioo | |
49 | 4 48 | eqtri | |
50 | 3 49 | metcn | |
51 | 45 46 50 | sylancl | |
52 | 6 44 51 | mpbir2and | |