Metamath Proof Explorer


Theorem nmlnopgt0i

Description: A linear Hilbert space operator that is not identically zero has a positive norm. (Contributed by NM, 9-Feb-2006) (New usage is discouraged.)

Ref Expression
Hypothesis nmlnop0.1 TLinOp
Assertion nmlnopgt0i T0hop0<normopT

Proof

Step Hyp Ref Expression
1 nmlnop0.1 TLinOp
2 1 nmlnop0iHIL normopT=0T=0hop
3 2 necon3bii normopT0T0hop
4 1 lnopfi T:
5 nmopgt0 T:normopT00<normopT
6 4 5 ax-mp normopT00<normopT
7 3 6 bitr3i T0hop0<normopT