Metamath Proof Explorer


Theorem nmoprepnf

Description: The norm of a Hilbert space operator is either real or plus infinity. (Contributed by NM, 5-Feb-2006) (New usage is discouraged.)

Ref Expression
Assertion nmoprepnf T : norm op T norm op T +∞

Proof

Step Hyp Ref Expression
1 nmopsetretHIL T : x | y norm y 1 x = norm T y
2 nmopsetn0 norm T 0 x | y norm y 1 x = norm T y
3 2 ne0ii x | y norm y 1 x = norm T y
4 supxrre2 x | y norm y 1 x = norm T y x | y norm y 1 x = norm T y sup x | y norm y 1 x = norm T y * < sup x | y norm y 1 x = norm T y * < +∞
5 1 3 4 sylancl T : sup x | y norm y 1 x = norm T y * < sup x | y norm y 1 x = norm T y * < +∞
6 nmopval T : norm op T = sup x | y norm y 1 x = norm T y * <
7 6 eleq1d T : norm op T sup x | y norm y 1 x = norm T y * <
8 6 neeq1d T : norm op T +∞ sup x | y norm y 1 x = norm T y * < +∞
9 5 7 8 3bitr4d T : norm op T norm op T +∞