Metamath Proof Explorer


Theorem nna1iscard

Description: For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion nna1iscard NωN+𝑜1𝑜rancard

Proof

Step Hyp Ref Expression
1 nnon NωNOn
2 oa1suc NOnN+𝑜1𝑜=sucN
3 1 2 syl NωN+𝑜1𝑜=sucN
4 peano2 NωsucNω
5 3 4 jca NωN+𝑜1𝑜=sucNsucNω
6 simpl N+𝑜1𝑜=sucNsucNωN+𝑜1𝑜=sucN
7 simpr N+𝑜1𝑜=sucNsucNωsucNω
8 6 7 eqeltrd N+𝑜1𝑜=sucNsucNωN+𝑜1𝑜ω
9 omssrncard ωrancard
10 9 sseli N+𝑜1𝑜ωN+𝑜1𝑜rancard
11 5 8 10 3syl NωN+𝑜1𝑜rancard