Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
⊢ ( 𝑁 ∈ ω → 𝑁 ∈ On ) |
2 |
|
oa1suc |
⊢ ( 𝑁 ∈ On → ( 𝑁 +o 1o ) = suc 𝑁 ) |
3 |
1 2
|
syl |
⊢ ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) = suc 𝑁 ) |
4 |
|
peano2 |
⊢ ( 𝑁 ∈ ω → suc 𝑁 ∈ ω ) |
5 |
3 4
|
jca |
⊢ ( 𝑁 ∈ ω → ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) ) |
6 |
|
simpl |
⊢ ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → ( 𝑁 +o 1o ) = suc 𝑁 ) |
7 |
|
simpr |
⊢ ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → suc 𝑁 ∈ ω ) |
8 |
6 7
|
eqeltrd |
⊢ ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → ( 𝑁 +o 1o ) ∈ ω ) |
9 |
|
omssrncard |
⊢ ω ⊆ ran card |
10 |
9
|
sseli |
⊢ ( ( 𝑁 +o 1o ) ∈ ω → ( 𝑁 +o 1o ) ∈ ran card ) |
11 |
5 8 10
|
3syl |
⊢ ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) ∈ ran card ) |