Metamath Proof Explorer


Theorem nna1iscard

Description: For any natural number, the add one operation is results in a cardinal number. (Contributed by RP, 1-Oct-2023)

Ref Expression
Assertion nna1iscard ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) ∈ ran card )

Proof

Step Hyp Ref Expression
1 nnon ( 𝑁 ∈ ω → 𝑁 ∈ On )
2 oa1suc ( 𝑁 ∈ On → ( 𝑁 +o 1o ) = suc 𝑁 )
3 1 2 syl ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) = suc 𝑁 )
4 peano2 ( 𝑁 ∈ ω → suc 𝑁 ∈ ω )
5 3 4 jca ( 𝑁 ∈ ω → ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) )
6 simpl ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → ( 𝑁 +o 1o ) = suc 𝑁 )
7 simpr ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → suc 𝑁 ∈ ω )
8 6 7 eqeltrd ( ( ( 𝑁 +o 1o ) = suc 𝑁 ∧ suc 𝑁 ∈ ω ) → ( 𝑁 +o 1o ) ∈ ω )
9 omssrncard ω ⊆ ran card
10 9 sseli ( ( 𝑁 +o 1o ) ∈ ω → ( 𝑁 +o 1o ) ∈ ran card )
11 5 8 10 3syl ( 𝑁 ∈ ω → ( 𝑁 +o 1o ) ∈ ran card )