Step |
Hyp |
Ref |
Expression |
1 |
|
nnon |
|- ( N e. _om -> N e. On ) |
2 |
|
oa1suc |
|- ( N e. On -> ( N +o 1o ) = suc N ) |
3 |
1 2
|
syl |
|- ( N e. _om -> ( N +o 1o ) = suc N ) |
4 |
|
peano2 |
|- ( N e. _om -> suc N e. _om ) |
5 |
3 4
|
jca |
|- ( N e. _om -> ( ( N +o 1o ) = suc N /\ suc N e. _om ) ) |
6 |
|
simpl |
|- ( ( ( N +o 1o ) = suc N /\ suc N e. _om ) -> ( N +o 1o ) = suc N ) |
7 |
|
simpr |
|- ( ( ( N +o 1o ) = suc N /\ suc N e. _om ) -> suc N e. _om ) |
8 |
6 7
|
eqeltrd |
|- ( ( ( N +o 1o ) = suc N /\ suc N e. _om ) -> ( N +o 1o ) e. _om ) |
9 |
|
omssrncard |
|- _om C_ ran card |
10 |
9
|
sseli |
|- ( ( N +o 1o ) e. _om -> ( N +o 1o ) e. ran card ) |
11 |
5 8 10
|
3syl |
|- ( N e. _om -> ( N +o 1o ) e. ran card ) |