Metamath Proof Explorer


Theorem nnlim

Description: A natural number is not a limit ordinal. (Contributed by NM, 18-Oct-1995)

Ref Expression
Assertion nnlim Aω¬LimA

Proof

Step Hyp Ref Expression
1 nnord AωOrdA
2 ordirr OrdA¬AA
3 1 2 syl Aω¬AA
4 elom AωAOnxLimxAx
5 4 simprbi AωxLimxAx
6 limeq x=ALimxLimA
7 eleq2 x=AAxAA
8 6 7 imbi12d x=ALimxAxLimAAA
9 8 spcgv AωxLimxAxLimAAA
10 5 9 mpd AωLimAAA
11 3 10 mtod Aω¬LimA