Metamath Proof Explorer


Theorem nnnle0

Description: A positive integer is not less than or equal to zero. (Contributed by AV, 13-May-2020)

Ref Expression
Assertion nnnle0 A¬A0

Proof

Step Hyp Ref Expression
1 nngt0 A0<A
2 0re 0
3 nnre AA
4 ltnle 0A0<A¬A0
5 4 bicomd 0A¬A00<A
6 2 3 5 sylancr A¬A00<A
7 1 6 mpbird A¬A0