Metamath Proof Explorer


Theorem nnpw2even

Description: 2 to the power of a positive integer is even. (Contributed by AV, 2-Jun-2020)

Ref Expression
Assertion nnpw2even N 2 N 2

Proof

Step Hyp Ref Expression
1 2cnd N 2
2 2ne0 2 0
3 2 a1i N 2 0
4 nnz N N
5 1 3 4 expm1d N 2 N 1 = 2 N 2
6 2nn 2
7 6 a1i N 2
8 nnm1nn0 N N 1 0
9 7 8 nnexpcld N 2 N 1
10 5 9 eqeltrrd N 2 N 2