Metamath Proof Explorer


Theorem nodmon

Description: The domain of a surreal is an ordinal. (Contributed by Scott Fenton, 16-Jun-2011)

Ref Expression
Assertion nodmon A No dom A On

Proof

Step Hyp Ref Expression
1 elno A No x On A : x 1 𝑜 2 𝑜
2 fdm A : x 1 𝑜 2 𝑜 dom A = x
3 2 eleq1d A : x 1 𝑜 2 𝑜 dom A On x On
4 3 biimprcd x On A : x 1 𝑜 2 𝑜 dom A On
5 4 rexlimiv x On A : x 1 𝑜 2 𝑜 dom A On
6 1 5 sylbi A No dom A On