Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Surreal Numbers
nodmon
Next ⟩
norn
Metamath Proof Explorer
Ascii
Unicode
Theorem
nodmon
Description:
The domain of a surreal is an ordinal.
(Contributed by
Scott Fenton
, 16-Jun-2011)
Ref
Expression
Assertion
nodmon
⊢
A
∈
No
→
dom
⁡
A
∈
On
Proof
Step
Hyp
Ref
Expression
1
elno
⊢
A
∈
No
↔
∃
x
∈
On
A
:
x
⟶
1
𝑜
2
𝑜
2
fdm
⊢
A
:
x
⟶
1
𝑜
2
𝑜
→
dom
⁡
A
=
x
3
2
eleq1d
⊢
A
:
x
⟶
1
𝑜
2
𝑜
→
dom
⁡
A
∈
On
↔
x
∈
On
4
3
biimprcd
⊢
x
∈
On
→
A
:
x
⟶
1
𝑜
2
𝑜
→
dom
⁡
A
∈
On
5
4
rexlimiv
⊢
∃
x
∈
On
A
:
x
⟶
1
𝑜
2
𝑜
→
dom
⁡
A
∈
On
6
1
5
sylbi
⊢
A
∈
No
→
dom
⁡
A
∈
On