Metamath Proof Explorer


Theorem noetainflem1

Description: Lemma for noeta . Establish that this particular construction gives a surreal. (Contributed by Scott Fenton, 9-Aug-2024)

Ref Expression
Hypotheses noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
noetainflem.2 W = T suc bday A dom T × 2 𝑜
Assertion noetainflem1 A V B No B V W No

Proof

Step Hyp Ref Expression
1 noetainflem.1 T = if x B y B ¬ y < s x ι x B | y B ¬ y < s x dom ι x B | y B ¬ y < s x 1 𝑜 g y | u B y dom u v B ¬ u < s v u suc y = v suc y ι x | u B g dom u v B ¬ u < s v u suc g = v suc g u g = x
2 noetainflem.2 W = T suc bday A dom T × 2 𝑜
3 1 noinfno B No B V T No
4 3 3adant1 A V B No B V T No
5 bdayimaon A V suc bday A On
6 5 3ad2ant1 A V B No B V suc bday A On
7 2oex 2 𝑜 V
8 7 prid2 2 𝑜 1 𝑜 2 𝑜
9 8 noextendseq T No suc bday A On T suc bday A dom T × 2 𝑜 No
10 4 6 9 syl2anc A V B No B V T suc bday A dom T × 2 𝑜 No
11 2 10 eqeltrid A V B No B V W No