Metamath Proof Explorer


Theorem normlem0

Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 7-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses normlem1.1 S
normlem1.2 F
normlem1.3 G
Assertion normlem0 F-SGihF-SG=FihF+SFihG+SGihF+SSGihG

Proof

Step Hyp Ref Expression
1 normlem1.1 S
2 normlem1.2 F
3 normlem1.3 G
4 1 3 hvmulcli SG
5 2 4 hvsubvali F-SG=F+-1SG
6 1 mulm1i -1S=S
7 6 oveq1i -1SG=SG
8 neg1cn 1
9 8 1 3 hvmulassi -1SG=-1SG
10 7 9 eqtr3i SG=-1SG
11 10 oveq2i F+SG=F+-1SG
12 5 11 eqtr4i F-SG=F+SG
13 12 12 oveq12i F-SGihF-SG=F+SGihF+SG
14 1 negcli S
15 14 3 hvmulcli SG
16 2 15 hvaddcli F+SG
17 ax-his2 FSGF+SGF+SGihF+SG=FihF+SG+SGihF+SG
18 2 15 16 17 mp3an F+SGihF+SG=FihF+SG+SGihF+SG
19 his7 FFSGFihF+SG=FihF+FihSG
20 2 2 15 19 mp3an FihF+SG=FihF+FihSG
21 his5 SFGFihSG=SFihG
22 14 2 3 21 mp3an FihSG=SFihG
23 1 cjnegi S=S
24 23 oveq1i SFihG=SFihG
25 22 24 eqtri FihSG=SFihG
26 25 oveq2i FihF+FihSG=FihF+SFihG
27 20 26 eqtri FihF+SG=FihF+SFihG
28 ax-his3 SGF+SGSGihF+SG=SGihF+SG
29 14 3 16 28 mp3an SGihF+SG=SGihF+SG
30 his7 GFSGGihF+SG=GihF+GihSG
31 3 2 15 30 mp3an GihF+SG=GihF+GihSG
32 his5 SGGGihSG=SGihG
33 14 3 3 32 mp3an GihSG=SGihG
34 33 oveq2i GihF+GihSG=GihF+SGihG
35 31 34 eqtri GihF+SG=GihF+SGihG
36 35 oveq2i SGihF+SG=SGihF+SGihG
37 3 2 hicli GihF
38 14 cjcli S
39 3 3 hicli GihG
40 38 39 mulcli SGihG
41 14 37 40 adddii SGihF+SGihG=SGihF+SSGihG
42 14 38 39 mulassi SSGihG=SSGihG
43 23 oveq2i SS=SS
44 1 cjcli S
45 1 44 mul2negi SS=SS
46 43 45 eqtri SS=SS
47 46 oveq1i SSGihG=SSGihG
48 42 47 eqtr3i SSGihG=SSGihG
49 48 oveq2i SGihF+SSGihG=SGihF+SSGihG
50 41 49 eqtri SGihF+SGihG=SGihF+SSGihG
51 29 36 50 3eqtri SGihF+SG=SGihF+SSGihG
52 27 51 oveq12i FihF+SG+SGihF+SG=FihF+SFihG+SGihF+SSGihG
53 13 18 52 3eqtri F-SGihF-SG=FihF+SFihG+SGihF+SSGihG