Metamath Proof Explorer


Theorem normpar

Description: Parallelogram law for norms. Remark 3.4(B) of Beran p. 98. (Contributed by NM, 15-Apr-2007) (New usage is discouraged.)

Ref Expression
Assertion normpar ABnormA-B2+normA+B2=2normA2+2normB2

Proof

Step Hyp Ref Expression
1 fvoveq1 A=ifAA0normA-B=normifAA0-B
2 1 oveq1d A=ifAA0normA-B2=normifAA0-B2
3 fvoveq1 A=ifAA0normA+B=normifAA0+B
4 3 oveq1d A=ifAA0normA+B2=normifAA0+B2
5 2 4 oveq12d A=ifAA0normA-B2+normA+B2=normifAA0-B2+normifAA0+B2
6 fveq2 A=ifAA0normA=normifAA0
7 6 oveq1d A=ifAA0normA2=normifAA02
8 7 oveq2d A=ifAA02normA2=2normifAA02
9 8 oveq1d A=ifAA02normA2+2normB2=2normifAA02+2normB2
10 5 9 eqeq12d A=ifAA0normA-B2+normA+B2=2normA2+2normB2normifAA0-B2+normifAA0+B2=2normifAA02+2normB2
11 oveq2 B=ifBB0ifAA0-B=ifAA0-ifBB0
12 11 fveq2d B=ifBB0normifAA0-B=normifAA0-ifBB0
13 12 oveq1d B=ifBB0normifAA0-B2=normifAA0-ifBB02
14 oveq2 B=ifBB0ifAA0+B=ifAA0+ifBB0
15 14 fveq2d B=ifBB0normifAA0+B=normifAA0+ifBB0
16 15 oveq1d B=ifBB0normifAA0+B2=normifAA0+ifBB02
17 13 16 oveq12d B=ifBB0normifAA0-B2+normifAA0+B2=normifAA0-ifBB02+normifAA0+ifBB02
18 fveq2 B=ifBB0normB=normifBB0
19 18 oveq1d B=ifBB0normB2=normifBB02
20 19 oveq2d B=ifBB02normB2=2normifBB02
21 20 oveq2d B=ifBB02normifAA02+2normB2=2normifAA02+2normifBB02
22 17 21 eqeq12d B=ifBB0normifAA0-B2+normifAA0+B2=2normifAA02+2normB2normifAA0-ifBB02+normifAA0+ifBB02=2normifAA02+2normifBB02
23 ifhvhv0 ifAA0
24 ifhvhv0 ifBB0
25 23 24 normpari normifAA0-ifBB02+normifAA0+ifBB02=2normifAA02+2normifBB02
26 10 22 25 dedth2h ABnormA-B2+normA+B2=2normA2+2normB2